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ABSTRACT

Firewalls and Network Address Translation (NAT) devices lae-
coming increasingly prevalent, and they pose a significaobp
lem for connection establishment for peer-to-peer prdtodhen
properly configured, thesmiddle-boxekinhibit TCP connections
solicited from outside the local network. This paper prazosovel
mechanisms to create direct TCP connections between twe hos
behind middle-boxes with minimal help from a third-partye kh-
plement two of these solutions on common hardware withima-co
mon environment. We are able to create direct TCP connexction
between two hosts which are both located behind typical Ni&Fs
signed for small networks. Once this connection is estabils
the applications can communicate with each other usingalatd
TCP implementation with no further external help.

Categories and Subject Descriptors

D.4.4 [Operating System$: Communications ManagementNet-
work communication C.2.5 [Computer Communications Net-
works]: Local and Wide-Area Networks+taternet C.2.2 [Computer
Communications Networkg: Network Protocols—Protocol Ar-
chitecture
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IWe refer to a NAT, firewall, or combination of the two asiddle-
box
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1. INTRODUCTION

Network Address Translation was introduced as a means to con
tinue the Internet’s growth despite rapid depletion of IB\BR-bit
address range. A secondary function of NAT is to hide the agktw
topology from an external entity. Network Address Traristatle-
vices (NATs, which are also commonly called middle-boxeg)-s
arate an internal network from the broader Internet thrahgtuse
of a separate address space in the internal network [9]. NKT's
namically translate between these address spaces for eaebrk
connection. In addition to the IP address translation, NAst
also allocate distinct external ports to distinct internasts. This
allows multiple internal hosts to communicate with the saxter-
nal host on the same source port. Another characteristicAOsN
is that they only allow connections originating from withhre in-
ternal network. NATs drop unsolicited connection atteripsince
they have no way of knowing to which internal host the packet
should be forwarded to.

Peer-to-Peer (P2P) networks have become increasinglylgropu
Despite the controversy generated by P2P file-sharing gnagr
such as Napster and KaZaA, many useful and legitimate applic
tions of P2P exist, for example, instant messaging, wodesghar-
ing [3], and file sharing. The OpenHash Project [8] is anotpgli-
cation of P2P networks. It provides a publicly availablaritisited
hash table (DHT) upon which applications can be developed, i
cluding, many-to-many instant messaging, and a reliabldabbl
database.

Since each NAT only allows the establishment of outgoing con
nections, two peers that are both located behind a NAT cagsiot
tablish a direct TCP connection. Commercial NAT vendorsehav
addressed this limitation by adding port forwarding chteastics
to their devices. With port forwarding, administrators caecify
the end hosts that should receive unsolicited connectimats
for each port. While this solution provides the needed sttppo
for many cases, it is limiting in cases where there are maltip
machines providing the same service and when servicesreequi
accepting connections on ports determined dynamicallythEc
more, if the end user doesn’t have the required access onl&dge

2An unsolicited connection attempt is a TCP SYN packet or a UDP
packet from the external network for which no mapping alyead
exists at the NAT.



to configure the NAT, this solution is of no help.

P2P protocols have addressed this problem through a few com-

mon approaches. First, protocols have enabled technigoesety
peers that cannot be servers are sent messages that itisénnct
to initiate connections to peers that are requesting thaa. dT his
solution works in cases where only one peer is behind a NA&. Th
second common approach is to route traffic through proxias th
each peer can connect to. While this solution enables a ctinne
between two hosts behind NATs, it is inefficient since alffita
passes through the proxy. More related solutions are disduis
Section 3.

The aim of our work is to develop a solution that will enable a
direct TCP connection between hosts that are located b&tAmd.
In particular, we have developed solutions for various Emments
depending on the port allocation characteristics of the 4@
the availability of loose source routing in the network. Wavé

packet is sent back to the sender. ICMP error packets emleed th
packet that generated the error inside their payload soethdes
knows exactly which packet the error occurred on. If theserer
packets are generated from the external network, the axitrés

the embedded packet will be the external addresses ratethb
internal addresses. To make the embedded packet meaniagful
the internal network, it is necessary for NATs to perform\gerse
translation on the IP addresses within the ICMP error p&ckey-
load.

While all NATs implement these three features, there arhéur
categorizations of NATs based on their characteristicsthachet-
working environments that they support. There are fourgmates
of NATs: Two-way NATs, Twice NATs, Multi-homed NATs, and
Traditional NATs. For further discussion on Two-way NAT syite
NATs, and Multi-homed NATSs, see [12]. By far the most com-
mon type of NAT is a Traditional NAT, and can be further diuide

focused on TCP, rather than UDP connections because most P2Rnto Basic NATs and Network Address Port Translation (NAPT)

applications require reliable data transfer. Furthermbi®@P is a
connectionless protocol, and it doesn’t require a conaedtand-
shake or sequence numbers coordination. Solving P2P oveér UD
requires less complexity due to the simplicity of the proto®©ur
solutions use a third party to provide the peers with thermfo
tion needed to establish the direct connection. Dependnthe
environment we employ various techniques to enable coiumect
to be established in a predictable and timely manner. Ambeget
techniques are setting the packets’ Time To Live (TTL) loap<
turing and parsing outgoing packets to provide informatimtthe
third-party helper, and injecting manually-constructedhets into
the network to determine ports selected by the NAT. Addélbyn

if port allocation is random, the birthday paradox is legem to
reduce the necessary search space when determining theadxte
port the NAT has allocated. This approach yields a searcbespa
that is approximately square root the size of a naive, pratwsing
approach.

2. NAT CATEGORIZATION

Three specific features must be performed by a network device
foritto be considered a NAT: transparent address assighitnans-
parent routing, and ICMP packet payload translation.

Address assignment refers to the creation of a mapping eetwe
non-routable internal and routable addresses at the d$tarnet-
work session. For networks to continue to function corgeATs
must perform this address assignment transparently wigrdeto
both the source and destination. NATs can perform this assig
ment in either a static or dynamic manner. Static mappings tve
predefined in a particular NAT such that énternal IP address, In-
ternal port) tuple is mapped to a singl&xternal IP address, Exter-
nal port) tuple for every session. Dynamic mappings, on the other
hand, are defined on a per-session basis, and there is noteara
that the same mapping will be created for future sessions.

A similar feature that NATs must implement is transparent+o
ing. As mentioned, a NAT is a particular type of router thans-
lates addresses in the packets it routes. This translatiaives
changing the IP addresses and ports in packets based owaxbser
traffic flows. This must occur transparently with regard te tle-
vices in the network to ensure compatibility with existingtwork
stacks. A less obvious requirement of transparent rousnipat
NATs must ensure routing advertisements on the internalort
do not reach the external network.

The final feature that must be implemented by NATSs is perform-
ing the same translations that are done on regular packeteto
payloads of ICMP error packets. When an error occurs in tie ne
work, such as when a packet’s TTL expires, often an ICMP error

devices.

Basic NATs and NAPTSs differ only in whether the number of ex-
ternal addresses the NAT can assign to internal addresisgés
or smaller than the number of internal addresses. A simpl& NA
is used in the situation where the number of external adelseiss
larger than or equal to the number of internal addressese %
ery internal IP address can be given a unique external IReaddr
these NATs do not perform port translation. NAPTs are uséden
environment where there are less externally-allocatatitieesses
than internal addresses. The common situation is wherepieult
internal machines share one external IP address. In thes¢iens
the NAT needs to allocate ports in addition to IP addresseirte
inate the chance of network flow ambiguity. NATs and NAPTSs are
similar because neither accept incoming connections atiddam
assign addresses either statically or dynamically.

NAPTSs are the most common type of Traditional NAT since they
allow many internal machines to share a smaller set of adéses
Most commercial NAT devices designed for small networks are
NAPTs. We have chosen to use NAPTSs for our work due to their
prevalence and since they conflict with common P2P protdmpls
not allowing incoming connections. Henceforth we will nefe
NAPTSs simply as NATSs.

Our first step was to acquire commercial NATs to ensure that
their characteristics are in accordance with how NAPTs are d
scribed in literature. We used the NatCheck program [1] te ve
ify three common NATs: Netgear MR814, Linksys BEFSR41, and
Linksys BEFW11S4. All three NATs have the same behavior: All
three NATs provideconsistent translatioior both TCP and UDP
traffic. Consistent translation means that the NATs diyesthp
an (Internal IP, Internal port) pair to the saméExternal IP, External
port) for the duration of the time that thé@nternal IP, Internal port)
pair is in use, regardless of tH®estination IP, Destination port)
of the outgoing packets. Consistent translation is a diston-
cept from static and dynamic address assignment becateferis r
to not only the the IP address but also the port used by themaite
machine. RFC 3022 explicitly allows consistent transhafibl].
None of the three NATs provid®opback translatiorfor either
TCP or UDP, which indicates if NATs correctly handle coninats
between two internal computers that only know each othetisre
nal addresses. This test is not relevant for our purposeg $n
our work we have assumed that the two peers are behind differe
NATSs. Finally, all three NATs providensolicited filteringfor TCP
and UDP, which tests whether NATs prevent unsolicited ngessa
to internal computers. Unsolicited filtering occurs in alkT$ ex-
cept Two-way NATs and is the major hindrance in enabling P2P
communications between two devices behind NATSs.



3. RELATED WORK

Independently three authors from Cornell worked on diré2PT
connectivity through NAT and had similar results to ours.eifh
framework, termed NUTSS [4], provides for UDP and TCP con-
nectivity between hosts behind NATSs, but their TCP techaihas
a significant drawback. The protocol relies on spoofing pacike
order to enable TCP connectivity, which limits its feastiiin real
networks. Many Internet Service Providers perform ingféte-
ing to prevent spoofed packets from entering their netwaxksch
would cause the authors’ protocol to fail. Spoofing cannopdne
of any solution to reliably connect hosts. To their crediig authors
do mention a technique that does not rely on spoofing. However
the technique relies upon TCP stack behavior, which is quliatf
dependent. Our techniques described in this paper avoufiago
while making realistic assumptions as well as provide formme-
tivity in environments beyond what is considered in NUTSE [4

To address the difficulties that NATs create for many Interne
protocols, a middle-box communication (MIDCOM) architaet
is being developed [13]. MIDCOM is a protocol that would allo
users behind a NAT or firewall to alter the middle-box’s bebav
to allow desired connections on demand. This system, wipile a
propriate in some cases, is not always possible. In an envieat
where the user does not have control of the middle-box, PAP co
nections would still be disabled.

Many times users behind NATs or firewalls connect to a P2P
network through a proxy server. A commercial proxy solutien
provided by Hopster [6]. Hopster's proxy runs locally on freer
machine and tunnels application level traffic over httpst($43) to
Hopster’'s own machines. However, since Hopster routesadfic
through their own machines, their approach is inefficientom-
parison to ours, as is shown in the Section 5.

To enable direct P2P connections, UDP techniques have been

developed. UDP Hole Punching [5] allows direct connectiona
limited environment. The Simple Traversal of User DatagRno+
tocol through Network Address Translators (STUN) Protaéseain
implementation of UDP Hole Punching that allows for NAT beha
ior to automatically be detected and UDP connections cdeate
limited cases [10].

In UDP hole-punching, the external port at each NAT is ledrne
by a third party assisting the direct communication atteniaith
parties behind NATs send a UDP packet to the correct extporal
of the other peer. This creates the necessary NAT port mgppin
and establishes the connection. Once the mappings aredreat
direct UDP communication can occur. In situations where UDP
hole-punching succeeds, one or more of our techniquesriesse
in this paper will also work. Establishing a TCP connecti@i b
tween peers, rather than an UDP connection has advantaggs. F
UDP mappings at the NAT cannot be relied upon to exist for the d
ration of the connection and its setup. UDP is connectieniesl
there is no explicit end to UDP communication. NATs typigall
timeout UDP port mappings after period of inactivity. To mai
tain the UDP NAT mappings periodic traffic must be sent, ef¥en i
it is null, to uphold the UDP communication. Second, many-fire
walls are configured to explicitly reject any incoming UDRket.
Finally, a pure TCP implementation of the connection is niote-
itive and existing code can be more easily modified to levemag
techniques.

Recent work by Ford, et al. [2] has extended the hole-pumgchin
technique to enable TCP connections between hosts behiltd we
behaving NATs. The approach is similar to UDP hole-punching
since a mapping is created at each host's NAT that enableget di
TCP connection to be created, either via asymmetric or $anul

that works on most NATs as well as defining the charactesistic
necessary for other NATs to become compatible with TCP hole-
punching. Our work differs in that we have developed sohstifor
enabling direct TCP connections in the presence of variodiE N
behaviors, including those that are incompatible with T@Rh
punching.

Gnutella has a solution [14] for enabling TCP communication
between two peers, but it only handles situations in whiah peer
is behind a NAT. This solution is referred to as Push Proxyesd
sentially creates multiple nodes that can push connecéiquests
to the server that is behind that NAT. Servers behind NATglsen
messages to peers asking if they would be willing to be pusk-pr
ies. When the server behind the NAT indicates that it has a file
matching a query, it includes a list of those peers that hgveeal
to be push proxies. When the peer wants to download the file, it
sends a Gnutella PUSH message to a push proxy, who then passes
that message along to the server behind the NAT. The serkerde
the NAT then opens a connection to the peer who sent the PUSH
message so the file can be transferred. While this approash do
make it easier to establish a connection, it only handlectse
where one peer is behind a NAT. Our solution addresses the mor
difficult problem of when both peers are behind a NAT.

Walfish et al. [15] suggest using an indirection service thidt
provide connectivity of two peers behind NATs by having both
peers open a connection to the indirection server and hatiag
server forward all traffic between them—in this paper we want
achieve such a connection without the need for such an ttdire
service.

4. PROBLEM STATEMENT AND ASSUMP-
TIONS

Consider the situation in which a peer and its butkiyow each
other’s IP addresses and are both behind NATSs. If these hasts
to set up a direct TCP connection, a traditional TCP conapcti
will not suffice. In a traditional TCP connection one partysnu
be the initiator (creates the initial SYN packet) while thber lis-
tens for the initiation. In the situation where two peerslaehind
NATSs, the listening peer will be prevented from seeing theNSY
from the initiating peer because the SYNs will dropped atlighe
tening peer’s NAT. The SYNs are dropped because NATs and fire-
walls will typically not allow unsolicited packets from IRldresses
on the Internet to enter their private network space. Sordero
to establish a direct connection between two hosts behintisNA
each NAT must believe that the connection is solicited byhtbet
within its internal network. We achieve this by making botrtes
be the initiators of the TCP connection-both peers creatritial
SYN packet. Each NAT will believe the TCP connection attempt
is solicited and will allow subsequent incoming data thtotg its
private network. Note that although both peers send SYNgtack
we are not using TCP simultaneous open.

In order to successfully create a TCP connection between the
peers, each peer must know its buddy’s externally-facimyprtor
to initiating the connection. This port is chosen by the NATe a
packet arrives from its internal network requesting to heed to
an IP address outside the internal network. As its bookkegphe
NAT binds the internal IP address and port with the exteraal p
it chooses. We refer to this binding as the NAT’s mapping. The
NAT does not share this mapping with any host. Our techniques
show how the NAT’s mapping can be efficiently determined. ©nc
both peers know the externally-facing port of their buddgPTcon-

3We refer to a peer as “peer” and the other peer it is trying te co

neous TCP opens. This work focuses on developing a techniquenect to as its “ouddy.”
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Figure 1: Environment for which we develop our techniques.

nections are initiated by both peers. The TCP sequence and ac
knowledgment numbers are integral components of synchirani

the TCP connection. Sequence humbers cannot be choseobanly
served. Our paper shows how the coordination of these paegesne
can be managed in order to successfully create a TCP coonecti
regardless of the network environment.

Establishing direct TCP connections between hosts beEN
is a difficult problem because external ports chosen by NAEs a
not directly accessible by hosts behind the NATs, and becsws-
cessful TCP connections require coordination of sequendeae-
knowledgment numbers. There is no single solution thatwaltk
for all environments. The behavior of the NAT is dependeniten
implementation, and the ability to predict ports is dependa the
amount of activity on the internal network.

We make two valid assumptions about the network which held
for all the NATs we tested. The first assumption is we assumae th
hosts do not see ICMP TTL Exceeded packets from the external
network. These packets, if received by either the peer odyud
will terminate the TCP connection attempt. Many of our sols
rely on the ability to initiate a TCP connection by sending an
initial SYN packet with the TTL set too low. Once the SYN paicke
is dropped en route, ICMP TTL Exceeded packets are retumed t
the NAT. The NATs used for implementation did not forward 1€M
TTL Exceeded packets to the private network when in resptmse
TCP packets. Even if a NAT does forward ICMP TTL Exceeded
packets to the private network, firewalls can be deployedhat t
host to block such packets. Our second assumption is thaflTa NA
will not nullify the mapping created if it sees ICMP TTL Exaoksl
packets. Alternatively, we could leave the TTL value witk tte-
fault value, and rely on the destination NAT not generatirgPT
RST packets. In practice this is a viable option since manyNA
don’'t generate RST packets to help defend against port s@ann

5. TECHNIQUES

Using Figure 1 as the model environment, our goal is to erable
direct TCP connection betwednandB, residing behind NATs N
and Ns.

We have developed various techniques for enabling this TCP
connection depending on the exact properties of the NATtaad

network properties. If we consider this information as theeoed
triplet
(Na port allocation, Ng port allocation, source routing availability),
we consider the following cases:
Case 1:(predictable, predictable, LSR)
Case 2:(predictable, predictable, no LSR)
Case 3:(random, predictable, LSR)
Case 4:(random, predictable, no LSR)
Case 5;(random, random, LSR)
Case 6:(random, random, no LSR)
Note that(random, predictable, X) is equivalent to(predictable,
random, X).

i<
i(
i(
i<

5.1 Pre-connection Diagnostics

In order for the helperX, and the two peersi andB, to de-
termine which of the following cases their connection aftefalls
into, X must first do some diagnosis of each peer.

In order to use Cases 1, 3, and 5, the parties must determine if
loose source routing is available on the segments betveamnd
X andB and X. Loose source route (LSR) is an IP option that
allows the creator of an IP packet to specify a list of mangalie
addresses to be used in the packet’s route. The result affhicn
is that each IP address in the route list will receive the paak
the order specified in the route list. The loose source ropt®m
introduces a security risk, because an attacker can eayesdra
session by being in the route list. Due to this potential,rialany
routers drop packets containing the loose source routeropti

To determine if LSR is available fror to B throughX, A can
simply try to connect t@, loose source routing the packet through
X. If X receives this packet, then LSR is available frénto B
for the first half of the journey tX. If X does not receive any
packets after a specified timeout then it can be assumed LISR is
available. Becaus¥ can only tell if the first half of the journey
from A to B allows LSR from this method, it must check to see that
it also gets LSR packets froB If it does thenX can conclude that
LSR is available fromA to B throughX, in any other case it must
assume LSR is not an option.

To determine if M, will randomly or predictably allocate ports,
A can open two TCP connectionsXdrom sequential ports. If the
ports for these connections observeddgre sequential thex can
conclude that [\ allocates ports sequentially, and thus predictably.
When connecting t@, A should use the next port in sequence, to
ensure that N will continue to map ports in the mann&t can
predict.

If N o does not assign ports sequentially, it is still possibler&s p
dict A's ports, if Na implements consistent translatiohmust first
open a legitimate connection ¥ from internal portpa. Na will
assign this connection a random poK.very clearly can see the
port chosen by N since the packet was sent to i can open a
second connection 9§ sent to a different port oK from the same
internal port , andX can see if these two connections contain the
same external port. If they do,ANmplements consistent transla-
tion. A must now use the internal, to connect td, so thatX can
tell B the external port chosen byaNIt is important thatA and X
maintain this connection unti is connected td@ so that Ny will
not alter the port mapping.

If, after trying both methods of port predictiofis unable to re-
liably predict ports assigned byg\thenX must assume Nassigns
ports randomly.

While X completes this diagnosis #&fit can simultaneously do
the same withlB. OnceX has all the required information, the con-
nection protocol can begin. The specific case to implemededis
termined by the information gathered from this diagnosis.



5.2 Sequence and Acknowledgment Number
Coordination

Every participant in a TCP connection maintains two vagabl
a sequence number and an acknowledgment number. At any given
time, the sequence number at any host is the sequence nuiber o
the last packet sent. On the other hand, at any given timeadhe
knowledgment number at a host is the sequence number ofthe ne
expected packet. [7].

Stepping through the three-way handshake, the initial esgcpi
and acknowledgment numbers are established as follows:

1. After client sends SYN packet,
Client’s seqg#: P, ack#: N/A ) .
Server's seq#: N/A, ack#: N/A Figure 2: Case 1

. After server receives SYN packet and sends SYN+ACK,

Client's seg#: P, ack#: N/A

5.4 Case 1:(predictable, predictable, LSR)
Server's seg#: Q, ack#: P+1

We use the notatiolNa:4000 — Ng:500Q options/payloado
denote the contents of the packet while it is in transit onlthe
ternet from NAT Ny to NAT Ng. This notation signifies that the
packet has a source address of'NIP address, source port of
4000, destination address ogN IP address, and destination port
of 5000. Additionally, any important options or payloadued ap-
pear after the destination port. The options inclu@R:X SYN:P
ACK:Q, andSYN+ACK:R,SLSR:Xdenotes that the packet will be
loose-source-routed through SYN:P ACK:Q, denote the type of
TCP packet followed by the sequence or acknowledgment numbe
SYN+ACK:P, Q+1denotes that the packet is a TCP SYN+ACK
packet with sequence numbeand acknowledgment numbér+
1. Initially we develop Case Xpredictable, predictable, LSR), us-
ing the sequence of events found in Figure 2.

. After client receives SYN+ACK and sends ACK,
Client's seg#: P, ack#: Q+1
Server's seg#: Q, ack#: P+1

. After server receives ACK,
Client's seg#: P, ack#: Q+1
Server's seg#: Q, ack#: P+1

The state at the end of the three-way handshake must be repli-
cated by our solutions even though both peers assume abiexst r
At the end of each solution, each peer's acknowledgment rumb
must be one greater than their buddy’s sequence number.o@ur s

tions achieve this coordination.

5.3 Low TTL Value Determination b

Some of our solutions depend on setting a TCP packet’s time to
live (TTL) value such that the packet will leave the peerteinal
network, but not reach the buddy’s NAT. For different netkathis
value will be different, and as such it must be able to be dynam
cally determined.

To determine how far away the buddy is, a peer can follow the
typical traceroute method. That is, send SYN packets witreias-
ing TTL values, starting at 1. Each of these packets will eaus
ICMP TTL Exceeded messages to be sent back to the peers when 2.
the TTL expires. By analyzing when ICMP TTL Exceeded mes-
sages are returned the peer can determine a safe value tur tise f
low TTL value in the connection.

Most NATs will not forward ICMP TTL Exceeded messages
back to an internal host, so a peer can conclude that a TTlevalu
caused a packet to leave the internal network as soon as aR ICM
TTL Exceeded message is not returned.

Likewise, in situations where the NAT does forward ICMP TTL 3
Exceeded messages the peer must base the discovered safe TTL
value by analyzing the buddy NAT’s messages. If the buddg$ N
generates a RST packet then the peer can use a TTL value sne les
than the value that cause the RST packet. If the peer never get
a RST packet but begins to stop receiving ICMP TTL Exceeded
messages then it can conclude the buddy’s NAT drops unsalici
messages without reply, which is safe behavior. In facs thaise
is the same as when the peer’s NAT does not forward ICMP TTL
Exceeded messages.

This safe TTL value determination does not require any garti
pation by any party other than the peer. Thus, it can be doaeyat
point before the safe low TTL value must be used in the conoect

AandBsend a SYN to each other loose source routed through
HelperX

(2) Na:4000— Ng:5000, LSRX, SYN:P
(b) Ng:5000— Na:4000 , LSRX, SYN:Q

These SYN packets are generated by To@fect () calls.
These SYNs create the desired mappings at NARNd Ns.
The mapping at N will allow subsequent communication
from Ng:5000 to be relayed to A and vise versa.

X buffers both packets and serlandB the ISNs each other
used

(a) X:1234— Na:3999, B just used ISN Q
(b) X:1235— Np:4999, A just used ISN P

Each peer needs their buddy’s ISN, so they can fabricate a
legitimate SYN+ACK packet.

A andB send SYN+ACKs to each other

(2) Ng:5000— Na:4000, LSRX,
SYN+ACK:Q, P+1

(b) Na:4000— Ng:5000 , LSRX,
SYN+ACK:P, Q+1

These SYN+ACKSs are generated from a separate thread run-
ning on each peer. By reusing their original sequence num-
bers,P andQ, as the sequence numbers in the SYN+ACKSs,
andB will ensure the final state of the sequence and acknowl-
edgment numbers replicates that of a real TCP connection as
discussed in Section 5.2.



4. AandB send ACKs to each other

(2) Na:4000— Ng:5000, LSRX, ACK:Q+1
(b) Ng:5000— Na:4000, LSRX, ACK:P+1

The TCP stack will do this step for us automatically once the
fake SYN+ACKs are received.

5. X drops the two ACKs as they arrive, because no one is ex-
pecting to receive an ACK.

Figure 2 assumes th#& and B are aware of which port their
buddy will be working on; this assumption is reasonable esitihe

A

X

B

2 2
— 22 é//b,,,

3“/3&///
M/@/“b
% 4«/@0’/

peer and buddy must have known about each other ahead of time.

Prior to step 1X must perform port prediction on bothandB so
thatX can predict the ports that will be chosen by the NAT devices.
A must know N is working on port 5000, whil® must know that
Na is working on port 4000. For simplicity we assurKdtself is

not behind a NAT, but the only condition is thdtmust have prior
direct connections with both andB.

An alternative solution to Case 1 exis¥could spoof the needed
SYN+ACK packets in steps 2 and 3 rather than send information
to A andB so they can fabricate the SYN+ACKs themselves. We
choose the presented method becauXespoofs the SYN+ACKSs,
they may be dropped by a router rather than forwarded. Aafditi
ally, moving SYN+ACK forging fromX to A and B removes the
need forX to run with superuser privilege#\ andB must already
run with superuser privileges for other purposes.

Since steps 2 through 5 are so repeatedly used in our te@miqu
we will denote Function Casel(integer extPortA, integer extPortB)
as the execution of steps 2 through 5, substituting the petems
extPortA and extPortB for the external ports 4000 and 5000 re
spectively.

5.5 Case Z2predictable, predictable, no LSR)

Case 1 relied on the availability of loose source routing.sMo
routers currently are configured to prevent loose sourc&ngu
and will typically drop packets requesting the service. Ashs
there is a high probability that techniques relying on losserce
routing will not be successful in practice. If loose sourgeting is
not available, the sequence number of the SYNs can be communi
cated toX using an out-of-band channel (their pre-established TCP
connection withX) instead of havingK physically see the packets.
Note that in step 2 of Figure X knows the TCP sequence numbers
P and Q because¢ actually received the two SYN packets. Without
loose source routing this is not the case.

To initiate the connection, each end host sends an initidll SY
packet to their buddy that they know will not reach its destiion.
They then sniff the packet off the network, note the sequence-
ber, and report this information %§. X needs the TCP sequence
number from these packets so that it will be able to relay the i
formation back toA andB so that they can generate SYN+ACKSs.
Two ways of sending packets that will not reach their detitina
are addressed.

The simplest solution is for each peer to send a SYN to their
buddy without regard. Properly configured NATs and firewatls
the receiving end will not forward this packet to the intdrhast
because no mapping exists. Some NATs and some firewalls will
send TCP Reset packets (RSTs) to the source of an unsolgtsd
packet. If a NAT does generate RST packétandB cannot simply
send a SYN to each other like step 1 in Figure 2 would suggest,
because upon receipt of this RSTy lnd Ns would terminate the
hole created. If the NATs do not generate RST packets, the ope
TCP connections will not be abruptly terminated.

Figure 3: Case 2

Another way to ensure the SYN packet will not reach its desti-
nation network is to send SYN packets with TTL values lesa tha
the path length to the buddy’s NAT. The packets will defiryiteé
dropped on the way to the destination, and a TCP RST packiet wil
not be seen by either sender. Rather, an ICMP Time Exceeded
packet will be seen and is a problem because ICMP Time Exdeede
packets terminate a TCP connection abruptly. Howevergitiger
can configure their local firewall to drop ICMP packets or i th
NAT doesn't forward these ICMP messages to its internal agkw
the TCP connection attempt will not abruptly close.

A solution cannot involve simply spoofing the source addodss
the SYN packet so that the sender does not receive eitheEME |
packet or the RST packet. Doing this would create an invafig-m
ping at the middle-box. Upon seeing a SYN packet, the mitidbe-
will create a mapping from internal IP address and port terext
IP address and port. However, since a spoofed SYN packethas a
incorrect source IP address, the mapping will not corregdpiothe
correct host in the internal network. Additionally, a sabat can-
not involve setting the TTL so low that even the middle-boxsio
not see the SYN packet, because doing this would not create th
mapping that we need to allow subsequent communicatiortlieto
network from the outside.

Assuming a(predictable, predictable, no LSR) environment, the
connection as we now have described is presented in Figure 3.

1. X does port prediction as described in Section X predicts
Na’s next port to be 4000 andgi next port to be 5000X
informs A andB of this via their existing connections.

. AandB send a SYN to each other that they know will be
either dropped by the NAT at the other side or dropped due
to a TTL expiration

(a) Na:4000— Ng:5000, SYN:P

(b) Ng:5000— Na:4000, SYN:Q
This is the point at which the actual TGR®nnect () call
is made at each peer. The SYN packets are generated by
the TCP stacks. This creates the mappings at the NATs that

will allow subsequent communication from the buddy’s IP
address and port to reach the peer.

3. AandB sendX the ISNs (P and Q) they observed

(2) Na:3999— X:1234, | just used ISN P
(b) NB:4999— X:1235, | just used ISN Q



Each peer will need its buddy’s ISN so they can fabricate
legitimate SYN+ACKSs to their buddy.

4. X sendsA andB the ISNs each other observed

(a) X:1234— Na:3999, B just used ISN Q
(b) X:1235— Npg:4999, A just used ISN P

5. AandB send SYN+ACKSs to each other

(2) Ng:5000— NA:4000, SYN+ACK:Q, P+1
(b) Na:4000— Ng:5000, SYN+ACK:P, Q+1

This is the second part of the three-way handshake. Again,
by reusing their original sequence numbé&*gndQ, as the
sequence numbers in the SYN+ACK&sandB will ensure

the final state of the sequence and acknowledgment numbers
replicates that of a real TCP connection as discussed in Sec-
tion 5.2.

6. A and B send ACKs to each other that they know will be
either dropped by the NAT at the other side or dropped due
to a TTL expiration

(8) Na:4000— Ng:5000, ACK:Q+1
(b) Ng:5000— Na:4000, ACK:P+1

The TCP stack will send these ACKs automatically for us,
finishing the three-way handshake. We do not want the ACKs
to reach their destinations because no one is waiting for an
ACK.

Much like in Case 1, as an alternate to steps 4 and 6ould
spoof the needed SYN+ACK messagesAtandB. However, we
have chosen the presented method for the same reasons aein Ca
1.

Since steps 2 through 6 are so repeatedly used in our te@miqu
we will denoteFunction Case2(integer extPortA, integer extPortB)
as the execution of steps 2 through 6, substituting the peteas
extPortA and extPortB for the external ports 4000 and 5000 re
spectively.
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Casel (m.5000)

Figure 4: Case 3
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Case2 (m, 5000)

Figure 5: Case 4

5.7 Case 4random, predictable, no LSR)

5.6 Case 3irandom, predictable, LSR)

Case 3(random, predictable, LSR) is similar to Case 1 as de-
scribed in Figure 2. HoweveK will not be able to predict one of
the two NAT's ports, say N. A will have to send its SYN packet
first to allow X to view which port Ny chose.X will then have to
report this information td so thatB can send its SYN out to the
proper destination IP address and port. This modificatidDasfe 1
is depicted in Figure 4 and is explained below.

1. X does port prediction as described in Section X tannot
predict Ny's next port, but can predict §s next port to be
5000 and informg\ and B of this via their existing connec-
tions.

2. AandB synchronize vi&X

(&) Na:m— Ng:5000, LSRX, SYN:P
(b) X letsB know that N is working on portm
(c) Np:5000— Np:m, LSRX, SYN:Q

These SYN packets are generated by TGRhect () calls.
These SYNs create the desired mappings at NABRA Ns.

3. Call Case1l(mb5000

The environment in Case 4 {sandom, predictable, no LSR). We

have developed a solution for this environment that dependke
random NAT not rejecting a TCP packet with an invalid ACK or
checksum field corresponding to a connection previoustjaied
by the host behind the NAT. The solution is presented in Fdur
and explained below.

1. X does port prediction as described in Section X tannot
predict Ny's next port, but can predict s next port to be
5000 and informgA and B of this via their existing connec-
tions.

2. AsendsT SYNs toB that will either be dropped by the NAT
at the other side or dropped due to a TTL expiration

i=0

Whilei <T
Na:rand — Ng:5000, SYNanything
i=i+1

End While

This createsT mappings at NAT M, one of which B will
eventually guess with a SYN+ACK.

3. Xinstructs B to begin sending SYN+ACKSs tzN



4. B sends many SYN+ACKSs toAuntil one reaches

i =1024

While A has not reported success
Ng:5000— Na:i,
SYN+ACK:,anythinganything Payload:
i=i+1

End While

5. Areports the payload of the packet that made it through the
NAT.
Na:3999— X:1234, portm worked
A will see this invalid SYN+ACK packet by listening on the
wire for any SYN+ACK packet from B.

6. X tells B to connect withA on portm
B now knows where to send its SYN.

7. Call Case2(m5000

The T SYNs sent byA in step 2 are independent of any TCP
connect () call. They are merely packets generated using the lib-
net libraries, creating mappings at NAR. On the other hand,
the SYNs generated in step 2 of tlkase2call are due to TCP
connect () calls byAandB. This solution to a Case 4 environment
depends on the behavior of the NAT that allocates ports rahdo
The solution relies on the middle-box not denying TCP packet
with incorrect fields such as the sequence number or checksum

The valueT can be chosen such thBthas a 95% chance of
guessing a correct external port after generafinGYN+ACKs
with random destination port numbers. In essence, Arvhdomly
choosesT numbers (its external port numbers), tH@must keep
guessing numbers until one chosen Bys in the set chosen by
NAT 5. We can use a probabilistic analysis to construct an efficien
scenario in which a minimal amount of work is imposed on both
A andB. Let Prg be the probability thaB guesses at least one
correct port inT trials, and letPr_g be the probability thaB does
not choose a correct port h trials. Given that NAR has already
choseriT distinct port numbers within the randf025 65539, if B
chooseq distinct ports, the probability d not choosing a number
from the set chosen by NAJis

n—-T n-1-T n-2-T n—(T-1)-T
n n-1 n-2 ' n—(T-1)

where n is the number of possible port choiges- 65535 1024=
64511).

Prog =

T-1 ;
n—i—T
Prog = rL -
i n—i

Conversely, the probability of guessing at least one pamtectly
in T trials is

PTG =1- PI}G
As stated beforel should be chosen such that

Prg > 95%

T-1,/_;_
1— r!)”n' iT > 95%

Solving this product fofl yieldsT = 439.

439-164511— i — 439
1— " —0.9506> 95%
[ —6as115 it

PortNa PortNg
Knowledge Knowledge
A B

Figure 6: Resource Diagram Deadlock
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Figure 7: Case 5

This result says that if A sends out 439 SYN packets, which are
mapped to distinct, random, external ports at WA&ndB sends
many SYN+ACK packets with distinct, random, destinatiomtgo
B has greater than a 95% chance of correctly guessing one of the
439 mapped external ports before it sends the 440th SYN+ACK.
The reason for only sendinf SYN packets is to minimize two
resources, the first being network bandwidth use, and thendec
being the number of mappings created at the NAT.

5.8 Case 5random, random, LSR)

In Case 5 the environment {gandom, random, LSR). In order
to allow X to synchronize botlA andB, B must know the port cho-
sen by N, prior to sending out its SYN. In order to determine what
port Na will choose, X will have to seeA’'s SYN packet.A's SYN
packet cannot be sent unkl determines which port plchooses.
This deadlock is illustrated in Figure & is holding the “Port
Knowledge” resource by not sending out a SYN, effectivelg-pr
venting X from learning the port chosen byN Likewise B is
holding the “Port Ny Knowledge” resource. Each needs the other’s
port before they can release the resource held. Our solpten
vents this deadlock by havilgandB send two SYN packets loose
source routed througK, not connected to a TC&nnect () call.
These two SYN packets create the mappings needed at each NAT
and allowsX to gain the two resources, and coordinate the connec-
tion in a similar manner to Case 1 or 2. Our solution for Case 5 i
shown in Figure 7 and is explained below.

1. X does port prediction as described in Section X tannot
predict Ny or Np's next ports and informA andB of this via
their existing connections.

2. AandB each send a SYN loose source routed thra¥igh
(@) Na:m— Npg:anythingSYN:anything LSRX
(b) Ng:n — Na:anythingSYN:anything LSRX
(c) X reportsmto B andnto A.
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Figure 8: Case 6

These SYNs will create the necessary mappings at each NAT.

3. AandBsend a SYN to each other loose source routed through
X
(& Na:m— Ng:n, LSRX, SYN:P
(b) Ng:n— Na:m, LSRX, SYN:Q
Because oConsistent Translatigreven though the destina-
tion ports are different from the previous step, the NAT will

still utilize use the same mapping (and thus the same externa
port) for these packets.

4. Call Casel(m, n)

These SYNs creaf€ mappings at both NATSs.

. BandA send many SYN+ACKSs to their buddy’s NAT until
one reaches their buddy.

i =1024

While A has not reported success
Ng:rand — Nai,
SYN+ACK:,anythinganything Payload:
Na:rand — Ngi,
SYN+ACK:,anythinganything Payload:
i=i+1

End While

. AandB report the payload of the packet that made it through
the NAT.
Na:3999— X:1234, portm worked
Ng:4999— X:1235, portin worked

. X tells B to connect withA on portm and tellsA to connect
with B on portn.
A andB now know the external port of their buddy.

6. Call Case2(m, n)

Case 6 is significantly more difficult than Case 4, becaush eac
peer must correctly guess one entire mapgismirce port, desti-
nation port) at the opposite NAT. In Case 4, the peer behind the
non-random NAT only had to guess the destination port ctiyrec
The source port was fixed since one of the NATs was predictable
The search space for Case 6 is the square of the search space fo
Case 4 - instead of 64,511 possibilities, there are 4,161184
combinations to be guessed from.

6. IMPLEMENTATION

We have implemented Cases 2 and 4 in C on Linux workstations
and have made use of the libnet and libpcap libraries. Casgs 1

Note that the SYNs sent in step 2 are not connected to any TCP 5. and 6 were not implemented.

connect () call, rather the SYNs sent out in step 3 are duetoa TCP
connect () call. Also the SYN+ACKSs sent in step 3 of tizasel
call are not tied to a TCRccept () subroutine.

5.9 Case 6frandom, random, no LSR)

In Case 6 the environment {g&ndom, random, no LSR). Look-
ing back at the resource diagram deadlock in figure 6, neiher

Both the helper and peer connection libraries consist ofiglesi
function. The helper routineat bl ast er _server (), only needs
to be provided the port number the helper should listen one Th
peer connection routineat bl ast er _connect (), must be pro-
vided seven parameters: (1) the helper’'s IP address ando(2) p
number, (3) the local peer’s external IP address, (4) ialdfad-
dress, and (5) port, (6) the buddy’s external IP address,(@nd

nor B holds these port knowledge resources since packets cannot?rt- The local peer and buddy ports are only needed by tipehel

be loose source routed. The solution to this case is piciarBiy-
ure 8 and explained below.

1. X does port prediction as described in Section X tannot
predict Ny or Ng's next ports and informA andB of this via
their existing connections.

. A'sendsT SYNs toB andB sendsT SYNSs toA that will
either be dropped by the NAT at the other side or dropped
due to a TTL expiration

i=0

Whilei <T
Na:rand — Ng:rand, SYN:anything
Ng:rand — Na:rand, SYN:anything
i=i+1

End While

to help create a unique identifier for the connection atteriijie
(Local External IP, Buddy Internal IP, Buddy Internal Port) triple is
used as the unique identifier at the helper. The librariebtuyil

to provide a socket on the specified ports, however, therretur
socket is not guaranteed to be over the ports specified. Assum
ing thenat bl ast er _connect () works, the library returns a valid
socket handle.

To test our implementation we ran two peers, each located be-
hind different commercial NATs on separate networks. Thelth
party program was run on a third computer not located behind a
NAT. We tested our code on the Internet rather than a locatarét
to make our tests more realistic.

In order to create packets that will never reach the buddy and
return no error message, we set the TTL value too low to reach
the buddy. Setting the TTL too low was accomplished by cgllin
theset sockopt () system call with thé P_TTL option. The option
also requires a TTL value. This value must be less than théoatum
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